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FOREWORD

The work described in this report was performed in the Fire Control
Formulation Branch (K41), SLBM Research and Analysis Division, Strategic
Systems Department, and was authorized under Strategic Systems Program Office
Task Assignment 36401. This work was necessitated by the need to formulate an
exact method of computing geodetic latitude and altitude.

This report has been reviewed and approved by Davis Owen; Johnny Boyles;
Robert Gates, Head, Fire Control Formulation Branch; and Sheila Young, Head,
SLBM Research and Analysis Division.

This document is a revised version of NSWC TR 85-85, dated April 1985. The
distribution statement has been changed.

Approved by:

LR.I SC aIDT, Head
Strategic and Space Systems Department

NTIS M.~ J
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I NTRODUCT ION

Fillowing is a simple and efficient model for calculating the exact
geodetic latitude and altitude of an arbitrary point in space, given the

coordinates of that point. The model assumes the earth to be an oblate
spheroid; i.e., an ellipsoid of revolution whose semimajor axis (a) is the
radius of the circle described by the equatorial plane, and whuse semiminor
axis (b) is a line joining its center and one of its poles. The point in
question can be either inside or outside the ellipsoid, but not too close to
the center of the ellipsoid. The solution of the problem and its constraints
will now be expounded.

FORMULATION

Choose an earth-fixed Cartesian coordinate system whose origin coincides
with the center of the ellipsoid, The unit vectors i, j, k coincide
with the (x, y, z) axes, respectively. The +z axis points in the direction of
the North Pole. The +x axis is the line of intersection of the equatorial
plane and the plane of zero longitude. The +y axis completes a right-handed
coordinate system.

An equation of the ellipsoid in this frame is

R2  z2

a2 + 2 1, where R - Vx2 + y2

Let P(xo, Yo, Zo) be the coordinates of the given point. It is desired to
find the points P(x, y, z) at which the normals from P to the surface of the
ellipsoid cut the ellipsoid.

The slope of a normal to the ellipsoid at any point on its surface is
given by

I a 2 z R2  z2
-~ -• 2- where -- + 7- . (2)

dR

Therefore the slope of a normal from P is

z Z a-z where Ra•0 t

Ro -R b-R :
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(Re - R)azz = (z 0 - z)bzR

or

Ra 2 z = R{a 2 z + b2 (zo - z)j = Ri(a 2 - bz)z + b½Zoj

Squaring both sides and expressing R in terms of z,

2
a2 b2 R2z 2 - (b2 - z2 )j(at - b2 )z + blz01

Writing the above equation in descending powers of z, we obtain the
following biquadratic in z:

2
(az - b2 ) z" + 2b'(a 2 - b2 )z 0 z3 + b2{a2 Rý + b2 z2 - (a 2 - h 2-

2 b(a 2 - b2 )z 0 z - b6 z2 = 0.

Now z is either positive or regative and therefore is not an appropriate
variable for the solution. However, this difficulty is easily circumvented by

Zintroducing a new dimensionless variable k * -. Using the constraint that z
zo

always has the same sign as z0 , we see that k is always positive. Putting z
z 0 k in the biquadratic and writing the resulting equation such that the
coefficient of k' is unity, we finally obtain

k 4 + 2pk 3 + qk 2 + 2rk + s 0

where

b 2

p 7 a 2  ,b 2

b 2 {a 2 R, + b 2 z2 - (a2  - 2)1

q (a 2  - b2)2z2 (4)

b"u

r = - (a2 - b2 )z25

b
6

(a2 - b2 )2 7

Now we will employ two of thrpo powprful theorems in the Thpory of Fqu"i-
tions to expose the nature of the roots of (*). The third theorem Vill hP
needed later on. The proofs of these theorems are given in Reference I.
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I. An equation f(x) = 0 cannot have more positive roots Than there ;r,-
changes of sign in f(x) , and cannot have more negative roots than there arp
changes of sign in f(-x).

II. Every equation which is of an even degree and has its last tern

negative has at least two real roots, one positive and one negative.

III. Every equation of an odd degree has at least one real root whose sign

is opposite to that of its last term.

By observing (*) and (3), (4), (5), (6), we deduce at onre the following
conclusions:

(i) Since the last term of (*), namely s, is negative, there are at least
two real roots of opposite sign (using IT).

(ii) Since there is only one change of sign in (*), irrespective of
whether q is positive or negative, there is at most one positive root
(using I).

From (i) and (ii) we see immediately that (*' has exactly one positive
root. Since k is constrained to be positive, this positive root is the one we
seek.

SOLUTION OF BIQUADRATIC

The solution of (*) is effected by a standard method known as Ferrari's
method which will now be enunciated.

In the equation

k1 + 2pk 3 + qk2 + 2rk + s - 0

add to each side (ck + d)z, the quantities c and d being determined so as to
make the left-hand side a perfect square; then

k4 + 2pk 3 + (q + c 2 )k 2 + 2(r + cd)k + s + d2 a (ck + d)2 .

Suppose that the left side of the equation is equal to (k2 + pk + t)2,
then by comparing the coefficients, we have

p2 + 2t = q + C2, pt - r + cd, t' = s + d 2 . (7)

by eliminating c and d from these equations, we obtain

(pt - r)} = (2t + p2  
- q}{t 2  

- S ,

or 2t 3 - qt 2 + 2(pr - s)t - p 2 s + qs - r2 = 0. (8)

3
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From (3), (4), (5), and (6), we see that

a 2 b8 R2

pr - s = 0, -p 2 s + qs - r 2 = - -

Substituting into (8), we obtain the following cubic in t:

az b R 2

2t' - qt 2 
- (a 2 

- bzPzz = 0.8')

Applying Theorem III to (8'), we see that (8') has at least one positive

root. Now applying Theorem I to (8'), we see that it has at most one positive

root, irrespective of whether q is positive or negative. Hence :8') has
exactly one positive root.

The solution of a cubic is accomplished by a standard method known as
Cardan's Solution.

First eliminate the t 2 term in (8') by making the substitution

t _ t, +_q
6

i.e.,

a? b8 R
2(t" + 2)3 - q(t' + 2)2

6(a2 -b 2 )4 -0

or

t-3 !32- a2bRS

12 108 2(a 2 
- b 2•z• 0.

Let

S3 a2b8Rf= a h = CL
12 108 2(a 2 - b2 )'z'

so that the above equation can be written in the form

t'3 + ft +h 0. (9)

To solve (9), lot r' = u + v, then

t = 3 u + v) = u+ + 3 uv (u + U) u3 + v, + uvt"

4
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and (9) becomes

U& + V3 + (3uv + f)t' + h = 0.

At present, u and v are any two quantities subject to the condition thar
their sum is equal to one of the roots of (9); if we further suppose that th-v

satisfy the equation 3uv + f 0 0, they are completely determinate. We thus

obtain

U3 + V h = h, u 3 v3 -

27

Hence, u3 , v 3 are the roots of the quadratic

f 3
•z + ha - =

Thus,

h h2  f 3
C- h2 +"-

Putting u3  h h 2  f3  v3 -h h2  f3" 4 2+7 2 + - ,we obtain t from

the relation t' u + v.

Hence, t ' • " 7 "(10)

hf f 3

The soýltinr (10) ic valid provided that h-- + f Ž> 0. It will now be

shown that this constraint is valid for all points of interest.
-+ a~b8 R•

h 2  f, I ___a_2 ____q _ ) 6

7 27 Z '- 108 2(a 2 2 y- Z. 46656

a 2 b8 R2q 3  a'b 1 6 R•

"432(a 2 - b 2 )4z + 16(a 2 - b2 )8 zo

a2b"'Ra 2R + blz - (a2 - b2 a4b' 6

= 4 32(a 2 _ b2 ) 1 0 z•O + 16(a 2 _ bZiazg, using (4

432(a 2 
- h)1O R + h2 z + - (a a - b))aV +

27a 2 h2 (a2 - W ) 2 Rpz20 I

• .m5



Thus, the required cc,

{a2 R4 + b"~ 7, (a2  b-'h 2  + 27ah-'( a2 -' h-' >~~~(

By inspect ion and a Iso by trial, it is seen that rho above ronst ra ,ne s

valid at all points of interest. As a matter of fact, the only points whpre ir

does not hold are those that are relatively closp to the orijn, i.e., rho

center of the ellipsoid; and these points are of no practirAl inrprost.

Now

a 2 ba R2
h -

-

108 2Da 2 - h2, z;

b6 ýa2 N2 + b2z Z2 a2  2 a 2 )'RV

108(a 2  - b2 )b ab 2(a - b' )' z•

b 62

--- 1o8(a 2 - b)Z [1a2  + b2z• -a 2 - bh I + 4a 2  - h )R-z .

If the constraint (11) holds, then the expression in the brackets abovP is

positive. Hence, h is negative. Applying Theorem III to (9), we conclude that

(9) has at least one positive root. Now applying Theorem I to (9) and using

the fact that both f and h are negative, we conclude that (9) has at most onp

positive root. Hence, (9) has exactly one positive root. It will now he shown

that this positive root is given by (10).

h2  fV
Let g - + T7 , then

2  (f)

Now g h -- f3- < 0, since f - - 12
4og- 27 12

h h 0 hc mlr ht -h h

Therefore. (- -v ) V g- +) < 0, which impll .a thit V-7 and V/g +

h h h

are of opposite sign; however, since h 0 0, % _ ; > V + T Hence, h-

+; i.e., u > v > 0O. Thus, t = u + v > 0.
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Prore-d ing v i th nour derva t inn, ý;o hArp

t "+ q > 0
b

Solving foi c and d from the svstpm of equations (7), we havr

c - ý p2 - q + 2td t 2 -s

Now (kV + pk + t ( c k + d ,

or k2 + pk + t (ck + d)

from which we obtain the two quadratics in k:

k+ + (p - c)k + t - d 0

k2 + (p + c)k + t + d = (t)

From (12) and (13), we obtain the following four roots of *(:

-P -- ) + (p - C) 2  4(t - d)

-(p c) - 4(P -c) 2 
- 4(t - d)

k22

-(p + C) + ý(p + c)-' - 4(t + d)
k3 =2

-(P + c) - ,4(p + c) 2 - 4(t + d)

DERIVATION OF GEODETIC ALTITUDE AND LATITUDE

It has already been shown that (*) has exactly one positive root. Since
t2- d2 = s < 0, (t + d)(t - d) < 0, which implies that t + d and t - d are of

opposite sign; but d > 0; thus t + d > 0 > t - d. Now t - d ir the last term
of (12) and has just been shown to bp negative. Hence, by applying Theorem II
to (12), we see immediately that (12) must contain the desired positivo root.

Inspecting the first two roots above, it is clear that k, is the required

positive root.

The rest of the solution follows trivial. Iv. Let k = k!. th-n

7 = •"
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R -a 1 - , and

RX 0 X0 -

'0RU

Stan-

1

x

(Here k is the longitudp at (x, y)).

The above solotion is not applicable to the case 7. 0 since two of tho
baeic parameters of the solution, q and s, involve a division by z 0 . Also, thrý
sol ition is not applicable to the case R. - 0. Hence these two cases havp to
he created separately; nevertheless, this poses no difficulty since the risulrs
are already known then.

The geodetic altitude is given byR 2 z0 1.2
H = sign 12+ 10 xt _-Xo 2+ý"_Y2 Z)_Z1a a2 b 2 ,- x 2 + ( 0 5) z

2 2

= sign - - 1 ( - R 2 + (z -Z)a2 b2 0- 0

In order to find the geodetic latitude and the unit normal vector at (x,
y, z), it is desirable to introduce a geometric term, Ne, which is never zero.
Ne is defined to be the distance along the ellipsoidal normal from the surface
of the ellipsoid to the z-axis (Reference 2). (See Figure 1.)

R

FIGURE 1. ELLIPSOIDAL NORMAL
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From Figure 1, we have

R
Ne

Also,

a
2 
z

tan 2 b-R from (2).

Hence,

4 4 aý2 V.--,2 + h' R2

Ne R sec 0 = R 1 + tan2 2 - R 1 + -R = b 2
b7R2  b2

a 2 z
sin c cos 4 tan 0 b2 Ne

Thus, the components of the unit normal vector at (x, y, z) are
2

HHx yH (a)~ z
Ne Ne ' Ne

The geodetic latitude 0, is

S= sin-1  H3

This completes our solution.

CONCLUSION

In contrast to other methods currently in use, this method theoretically
computes the exact values of the geodetic latitude and altitude, assuming the

earth to be a perfect ellipsoid of revolution. The method was programmed and
run for many given values of x 0 , yo , z. It gave results which are consistent

with those of other methods, including Brookshire's approximation (Reference 3)
and an iterative technique (Reference 4). Roundoff errors are negligible. For
all practical purposes, the results are excellent and the method is definitely
recommended as an alternative approach to problems involving geodetic latitude.

9
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APPENDIX

THE INVERSE PROBLEM

An arbitrary point in space is defined by k, 0. and H. Solve for (HI,

H2 , H3 ), (x, v, z), and (x 0 , yo, zo )

This problem is relatively easy to solve. From page 9, we have

R - Ne cos 4, z = -- Ne sin 0.
a-

R2  z2

Using the relation a2 + 12 1, we obtain

Nea2 b22

a2 (cos2, + h- sin2o C, 1;

or

Ne a a

cos2 o + 1 sin2  -_(1 - b) sin2 o

Also, from page 8, we have

X - tan-' x - sin-1 I cos-I x
x R R

Therefore,

x - R cos X a Ne cos 4 cos X,

y = R sin X - Ne cos 0 sin A.

Hence,

[x rNe cos 0cosI

I Ne cos i$ sin X

Izi a , Ne sin

A-i



x° x

H Cos Cos\

H= cos ssin
Ne

[H3 (a 2z siL
b , Te

From Figure 1, it follows immediately that

rxO H,1  [(Ne + H) cos 0 cos

[o 1y H,= (Ne + H) cos 0sink

[zo H ([2- Ne + H) sin

A-2
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